Каталог заданий.
Уравнения смешанного типа, разные вопросы об уравнениях
Версия для печати и копирования в MS Word
1
Задание № 260
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 2x умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 7x плюс 18 конец ар­гу­мен­та =x в квад­ра­те плюс 7x плюс 18.


Ответ:

2
Задание № 51
i

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 2 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 x пра­вая круг­лая скоб­ка =108 минус x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 6 пра­вая круг­лая скоб­ка равна ...


Ответ:

3

Ука­жи­те но­ме­ра функ­ций, для ко­то­рых зна­че­ние ар­гу­мен­та, рав­ное −6, яв­ля­ет­ся нулем функ­ции.



4
Задание № 1962
i

Зна­че­ние вы­ра­же­ние 6 минус 6 умно­жить на ло­га­рифм по ос­но­ва­нию 5 x_0, где x0  — ко­рень (наи­боль­ший ко­рень, если их не­сколь­ко) урав­не­ния

 дробь: чис­ли­тель: 3 плюс ло­га­рифм по ос­но­ва­нию 5 x, зна­ме­на­тель: 1 минус ло­га­рифм по ос­но­ва­нию 5 x конец дроби минус дробь: чис­ли­тель: 8, зна­ме­на­тель: 1 минус ло­га­рифм по ос­но­ва­нию 5 в квад­ра­те x конец дроби минус 2=0,

равно?


Ответ:

5
Задание № 1775
i

Ука­жи­те но­ме­ра урав­не­ний, ко­то­рые яв­ля­ют­ся рав­но­силь­ны­ми:

1.   левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 6 пра­вая круг­лая скоб­ка =0;

2.   ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 10 конец ар­гу­мен­та =2;

3.  x в квад­ра­те плюс 36=0;

4.   дробь: чис­ли­тель: x минус x в квад­ра­те минус 5, зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: x в квад­ра­те минус x минус 3, зна­ме­на­тель: 3 конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ;

5.  |x| минус 6=0.



6
Задание № 1954
i

Ука­жи­те но­ме­ра урав­не­ний, рав­но­силь­ных урав­не­нию  дробь: чис­ли­тель: 2,5, зна­ме­на­тель: x минус 7 конец дроби = дробь: чис­ли­тель: 4,1, зна­ме­на­тель: x плюс 9 конец дроби .



7
Задание № 206
i

Най­ди­те ко­ли­че­ство кор­ней урав­не­ния  ко­си­нус x=\left| дробь: чис­ли­тель: x, зна­ме­на­тель: 11 Пи конец дроби |.


Ответ:

8
Задание № 237
i

Най­ди­те ко­ли­че­ство кор­ней урав­не­ния  синус x= дробь: чис­ли­тель: минус x, зна­ме­на­тель: 16 Пи конец дроби .


Ответ:

9

Най­ди­те уве­ли­чен­ную в 3 раза сумму квад­ра­тов кор­ней урав­не­ния  ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 в сте­пе­ни левая круг­лая скоб­ка 2x в квад­ра­те плюс 3x минус 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 6 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та конец ар­гу­мен­та плюс 1 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка =0.


Ответ:

10
Задание № 1788
i

Най­ди­те уве­ли­чен­ную в 25 раз сумму квад­ра­тов кор­ней урав­не­ния

10 ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: 14 плюс 5x минус x в квад­ра­те конец дроби конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 14 плюс 5x минус x в квад­ра­те , зна­ме­на­тель: x в квад­ра­те конец дроби конец ар­гу­мен­та =19.


Ответ:

11

Най­ди­те сумму квад­ра­тов кор­ней урав­не­ния  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 6 конец ар­гу­мен­та левая круг­лая скоб­ка 2 в сте­пе­ни левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка плюс 4 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: x в сте­пе­ни 4 плюс 2x в квад­ра­те минус 24 конец дроби =0.


Ответ:

12
Задание № 90
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 36 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 12 конец дроби .


Ответ:
Завершить работу, свериться с ответами, увидеть решения.